
Irreversible magnetization deep in the vortex-liquid state of a 2D superconductor at high

magnetic fields

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2004 J. Phys.: Condens. Matter 16 L429

(http://iopscience.iop.org/0953-8984/16/41/L01)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 27/05/2010 at 18:15

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/16/41
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 16 (2004) L429–L435 PII: S0953-8984(04)82184-2

LETTER TO THE EDITOR

Irreversible magnetization deep in the vortex-liquid
state of a 2D superconductor at high magnetic fields

T Maniv1,2, V Zhuravlev1, J Wosnitza3 and J Hagel3

1 Chemistry Department, Technion—Israel Institute of Technology, Haifa 32000, Israel
2 Grenoble High Magnetic Field Laboratory, Max-Planck-Institute für Festkörperforschung and
CNRS, Grenoble, France
3 Institut für Festkörperphysik, Technische Universität Dresden, D-01062 Dresden, Germany

Received 17 June 2004
Published 1 October 2004
Online at stacks.iop.org/JPhysCM/16/L429
doi:10.1088/0953-8984/16/41/L01

Abstract
The remarkable phenomenon of weak magnetization hysteresis loops, observed
recently deep in the vortex-liquid state of a nearly two-dimensional (2D)
superconductor at low temperatures and high magnetic fields, is shown to reflect
the existence of an unusual vortex-liquid state, consisting of collectively pinned
crystallites of easily sliding vortex chains.

(Some figures in this article are in colour only in the electronic version)

Many potentially important superconductors, such as some of the high-Tc cuprates as well
as the ET-based organic conductors, are extremely type II superconductors with small in-
plane coherence lengths and nearly 2D electronic structure. ET (or BEDT-TTF) stands for
bisethylenedithio-tetrathiafulvalene. For these materials, drastic deviations from mean-field-
theory predictions due to strong fluctuations in the superconducting (SC) order parameter are
therefore expected, in particular under strong perpendicular magnetic field [1]. The great
fundamental interest in the latter class of materials stems from their moderately low upper
critical fields, which enable us to investigate the virtually unexplored phase diagram and
vortex dynamics of strongly type II superconductors at low temperatures and high magnetic
fields.

Of special interest is a recent striking observation in β ′′-(ET)2SF5CH2CF2SO3 of small,
but very clear magnetization hysteresis loops appearing well above the ‘major’ irreversibility
field at low temperature, where significant de Haas–van Alphen (dHvA) oscillations are
observable as well [2] (figure 1). It should be stressed that the occurrence of such high-
field hysteresis tails is not peculiar to this particular material as it can be observed in e.g.
κ-(ET)2Cu(NCS)2 as well [3].

The unusual feature of this irreversibility effect is associated with its appearance deep in
the vortex-liquid phase, where one usually expects unrestricted motion of flux lines through the
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Figure 1. Torque signal with several small hysteresis loops. Arrows indicate the field-sweep
directions. The determination of the major irreversibility field, Hirr, is shown in the inset.

entire SC sample, ensuring the establishment of thermodynamic equilibrium. In the present
letter we argue that the observed hysteresis effect is a general feature which reflects the unusual
nature (namely the nematic liquid-crystalline structure) of the low-temperature vortex-liquid
state in 2D superconductors well above the vortex-lattice melting point, which was recently
predicted theoretically [4].

According to this theory the vortex state above the major irreversibility field, Hirr (found
to be close to the vortex-lattice melting field, see below), is not an isotropic liquid but some
mixed phase containing SC domains of easily sliding parallel vortex chains which are stabilized
by a small number of strong pinning centres. This model resembles the sluggish vortex-fluid
picture proposed by Worthington et al [5] to describe the intermediate vortex-liquid phase
in defect-enhanced high-Tc crystals and applied more recently by Sasaki et al [6] to account
for a similar behaviour in the organic superconductor κ-(ET)2Cu(SCN)2. As shown below, a
simple Bean-like model for the magnetic-induction profiles, associated with the vortex chains
injected into the SC sample, yields very good quantitative agreement with the measured field
dependence of the magnetization hysteresis.

Our model consists of independent 2D SC layers in the x–y plane under the influence of
an external uniform magnetic field �H = H ẑ, H > 0, perpendicular to the layers (figure 2).
The SC sample is confined between two boundary planes at x = 0, and Lx . H is varied, at low
temperatures, from above Hc2 to the irreversibility field Hirr < Hc2, with clearly observable
magnetic quantum oscillations. The dHvA effect is measured by means of the torque method,
in which the signal is detected during steady (upward and downward) sweeps of the external
magnetic field. Note that, for the sake of simplicity, the small in-plane component of the
external magnetic field, required for this high-resolution measurement, is neglected in our
analysis.

The influence of a steady increase (or decrease) of the magnetic field on the distribution
of magnetic flux lines within the SC region is determined by the pinning forces acting on
quantized SC vortex lines near the normal–superconducting (N–S) boundary planes. The
pinning-force resistance against flux injection leads to the establishment of a flux-density
gradient perpendicular to the magnetic-field direction along the normal of the N–S boundary
plane (along x). Assuming the flux injection to be uniform along y, the current density �j = j ŷ
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Figure 2. (a) Sketch of a vortex crystallite, oriented with its easily sliding Bragg chains
perpendicular to the N–S boundary, under injection of flux lines. Note the scaling of the magnetic
length over a macroscopic distance L0. (b) Magnetization profiles during upward and downward
field sweeps.

and the field gradient, ∂ B
∂x , are connected by Ampere’s law:

∂ B

∂x
= −[ �∇ × �B] · ŷ = −4π

c
j, (1)

where the Lorentz-force density (per unit volume), exerted on the vortex current by the magnetic
field, is �FL = 1

c [ �j × �B] = FL x̂ .
We focus here on the field range H > Hirr where the reduced pinning force cannot

balance the driving Lorentz force and the motion of vortices in the entire SC region becomes
a continuous flow. This vortex movement with velocity �vφ is opposed by a dynamic friction
force, �Fη = −η�vφ = Fη x̂ , which balances the action of the Lorentz force at the critical velocity,
vc

φ = jc B/cη. In the corresponding steady state the motion of flux lines generates an electric

field [7], E = 1
c Bvc

φ , parallel to the current density �j . Consequently, the system develops
a finite electrical resistivity to the critical-current flow, ρ(B) = E/j = B2/c2η, so that the
Bardeen–Stephen (BS) relation [8, 9], η ≈ B Hc2/c2ρn, with ρn = ρ(Hc2), together with
the flux-line conservation law, lead to the nonlinear ‘diffusion’ equation for the magnetic-flux
density:

∂ B

∂ t
= Dφ

Hc2

[
B

(
∂2 B

∂x2

)
+

(
∂ B

∂x

)2
]

, (2)

with the diffusion coefficient Dφ ≡ c2ρn

4π
. In the high-field limit of interest here, when the

range �H of a single field-sweep cycle is much smaller than the initial field of the hysteresis
loop, H0, the nonuniform part of the magnetic induction associated with the flux flow is very
small, i.e.,

∣∣b(x, t)
∣∣ ≡ ∣∣B(x, t) − H (t)

∣∣ � H (t) � H0. Under this condition the second
term on the RHS in equation (2) can be neglected, and the equation may be linearized to
∂ B
∂ t ≈ ( H0

Hc2

)
Dφ

∂2 B
∂x2 . The solution of this equation, satisfying steady upward and downward

field-sweep boundary conditions, ∂ B
∂ t (x = 0, t) = ∂ B

∂ t (x = Lx , t) = �H
τ

for 0 � t � τ ,

and −�H
τ

for τ < t � 2τ , takes the forms B+(x, t) = H0 + �H t
τ

+ �B
[(

2x
Lx

− 1
)2 − 1

]
and

B−(x, t) = H0 + �H (2 − t
τ
) −�B

[(
2x
Lx

− 1
)2 − 1

]
, respectively, with τ being half the period

of the field-sweep cycle, and �B a constant.
Note the spatial rigidity of the induction profiles B±(x, t), which is assured, in the high-

field limit
∣∣b(x, t)

∣∣ � H , by the nearly instantaneous propagation of any local fluctuation of



L432 Letter to the Editor

the magnetic-flux density. Indeed, the propagation velocity of such a fluctuation, vf = ∂ B
∂ t / ∂ B

∂x ,

is found by equation (2) to be vf = c2ρn

4π Hc2

∂
∂x

(
B ∂ B

∂x

)
/ ∂ B

∂x , so that the flux-line velocity vφ satisfies

|vφ | � ∣∣vf

∣∣( ∂ B
∂x

)2
/B

∣∣ ∂2 B
∂x2

∣∣ � |vf |.
The resulting parabolic induction profile can be readily exploited to evaluate, for each

small hysteresis loop, the jump, �M↑↓, of the magnetization occurring at a point where the
field sweep is reversed (figure 2). The corresponding jump, �M↑↓ = 1

3π
�B , is determined

by the spatial average of the induction difference, [B−(x, τ ) − B+(x, τ )].
In what follows we present a simple model of the flux flow, which is based on the main

features of the vortex-liquid state in a 2D superconductor at high magnetic fields and which
can account for the observed experimental data. In the field range of interest here the vortex
system is in a liquid-crystal-like state, with long-range orientational order [4], which tends to
respond to flux injection by a smectic flow of vortices. We thus imagine an ensemble of vortex
crystallites, having their principal lattice vector aligned perpendicular to the N–S boundary,
i.e., along x , where a weak driving force can inject vortex chains into the SC region. We
will assume that these crystallites are stabilized by a dilute network of very strong pinning
centres. The building block of this system is a cluster of vortex chains, pinned to the underlying
metallic lattice through its two boundary chains. Thus, all the vortex chains within the cluster
are assumed to move freely, subject only to the intrinsic vortex–vortex interactions, while
the two edge chains, which are considered fixed in the laboratory frame. In this model the
frictional force, which opposes the action of the driving Lorentz force, arises solely from the
vortex–vortex interactions activated in shear distortions along the principal chain axis.

A microscopic description of the critical state established in the smectic flow outlined
above will enable us now to estimate the characteristic energy scale corresponding to the
friction of moving vortices. Comparison of this estimate with the experimental data will
provide support for the proposed picture. Suppose that the macroscopic driving Lorentz force
is generated by a continuous injection of vortex chains along the easy crystallographic axis
into the SC sample. In the critical state this injection supplies to a vortex chain just the minimal
kinetic energy mvv

2
φ0/2 required to overcome the energy barrier (between adjacent minima

and maxima) of the vortex–vortex potential. Here mv is the dynamic mass per vortex and vφ0

its initial velocity at the bottom of a potential well. Note that all extensive chain parameters
are expressed here per single vortex. The energy barrier is of the order of the phase-dependent
minimal coupling,εph ≈ 4λ2ε0, which is of the order of the characteristic vortex-lattice melting
energy, with ε0 being the SC condensation energy per vortex and λ ≈ 0.066 [4]. Suppose now
that the entire energy supplied to the vortex chain in a jump over a single barrier is dissipated
through a frictional force with the other chains. We shall now show that this leads to a friction
coefficient η identical to that derived from Caldeira–Leggett theory [10] for moving vortex
chains.

Since the average velocity, vφ0/2 ≈ √
εph/mv, of such a vortex chain can be identified in

the considered model with the critical-state velocity vc
φ , the energy dissipated in a single jump

is εdis ∼ ηvc
φ�x , where �x ∼ aH is the distance between neighbouring vortex sites along

the chain. Using the above expression for vc
φ together with the condition εdis = εph, we find

that η ≈ √
mvεph/aH , which is identical to the result obtained [11] from the Caldeira–Leggett

theory [10]. In the above expressions aH = √
ch̄/eH is the magnetic length.

Let us now relate the dissipation energy εdis to �M↑↓. In the critical-state model described
above the work (per unit volume) done by the Lorentz force in moving vortex chains within
the entire cluster over a distance �x between two neighbouring sites (i.e. �x ∼ aH ) is
WL = ∫ Lx

0
1
c | jc (x) B (x)| dx ≈ ( H0

4π

) × 2
∫ Lx /2

0

∣∣ ∂ B
∂x

∣∣ dx = (
3
2

)
H0�M↑↓. This may be

rewritten in units of the maximal SC condensation-energy density, Econd = H 2
c2

16πκ2 , so that
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Figure 3. Experimental major irreversibility fields (open circles) and theoretical melting fields
(solid curves) as functions of temperature for two organic superconductors. Data for κ-
(ET)2Cu(NCS)2 from [3].

for B ≈ Hc2, ε̃L ≡ WL/Econd ≈ 24κ2�M↑↓/Hc2. This dimensionless energy scale
should be compared to the dissipation energy per vortex, estimated above from the condition
εdis = εph ≈ 4λ2ε0, after normalizing with respect to the SC condensation energy per vortex,
ε0.

Using the experimental value of the magnetization jump at B = 2 T, that is �M↑↓ ≈
4 × 10−8 T, we find that ε̃L ≈ 4 × 10−3, where κ ≈ 46 is used [12]4. This result is of the
same order of magnitude as ε̃dis = εph/ε0 ≈ 4λ2 ∼ 10−2, which is the characteristic energy
scale associated with the melting of the vortex lattice in 2D superconductors. This agreement
lends support to the proposed model that most of the vortex crystallites are aligned with their
principal lattice vector along the direction of the flux-line motion [13], so that the flux flow
is dominated by easily sliding vortex chains, which are subject only to the residual shear
resistance characterizing the vortex-liquid state above the melting transition [1]. This picture
is very similar to the moving smectic state found recently in many numerical simulations of
2D vortex lattices in the presence of random pinning centres [14].

The similar values of ε̃ph and ε̃L, found above, may also reflect the correlation between
the onset of irreversibility and the vortex-liquid freezing transition. This may be verified
by calculating the temperature-dependent melting field, Hm(T ), and comparing it to the
irreversible field, Hirr(T ), extracted from the experimental data. Similar to [3], Hirr(T ) is
determined here by the onset of the major hysteresis in the magnetization curve (see the inset
in figure 1). Within the Ginzburg–Landau (GL) approach, Hm(T ) has been derived by several
authors [4, 15]. It can be obtained from ξ2(Hm, T ) = g2

m, where ξ2(H, T ) ≡ ε0/kBT ,
with ε0 = α2/2β, and α and β are the GL parameters. Here we estimate |�0|2 = α

β
=

(1.76kBTc)
2 ln

( Hc2
B

)
, and β = 1.38

EF(h̄ωc)
2 , where ωc = eB/mcc is the cyclotron frequency

(see [1]). Using our estimate, g2
m ≈ 1/4λ2, and neglecting the weak temperature dependence of

Hc2 at low T , we obtain the simple equation for hm(t) = Hm(T )/Hc2(0): ln (hm) = −k0
√

thm,
where t = T/Tc(0) and k0 is a single dimensionless parameter depending on the properties
of the superconductor through k2

0 � 0.15g2
m EF(h̄ωc2)

2/(kBTc)
3. The function hm(t) for β ′′-

(ET)2SF5CH2CF2SO3, with Tc(0) = 4.4 K and Hc2 = 2 T is shown in figure 3(a). The
experimental irreversibility line agrees rather well with the calculated melting curve. A similar

4 The value κ ≈ 46 is recalculated using the reduced value of Hc2 found in the present paper.
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Figure 4. Field dependences of the experimental magnetization jumps (triangles) and the fit (solid
curve) according to equation (3).

procedure is applied to κ-(ET)2Cu(NCS)2. The parameter Hc2 ≈ 4.7 T was determined by
fitting the additional damping amplitude of the dHvA oscillation in the mixed SC state, as
calculated from our SC fluctuation theory [1], to the corresponding experimental data [3].
Again, the calculated melting curve is found to be close to the irreversible line obtained in [3]
(see figure 3(b)). It is interesting to note that at T = 0 the resulting melting field coincides
with the mean field Hc2. The sharp increase toward Hc2, characterizing Hm at T → 0, is
similar to that of Hirr observed experimentally in both materials.

The proximity of the melting and the irreversibility lines, Hirr ≈ Hm, justifies the use of
our fluctuating-vortex-chain model above Hm [1] in attempting to account for the magnetic-
field dependence of the jump �M↑↓ above Hirr, extracted from the experimental result shown
in figure 1. Since the generators of the flux-density gradient, i.e., the pinning force and
the vortex–vortex interaction, all originate in the existence of local SC order at the vortex
position, it should be proportional to the mean-square SC order parameter, 〈|�0(H )|2〉 [16],

and so the magnetization jump can be written as �M↑↓ = 1
3π

�B ≈ Lx
3π

∣∣ ∂ B
∂x

∣∣ ∝ 1
B 〈|�0(B)|2〉,

where the bar means spatial averaging. Using the limit of independently fluctuating vortex
chains in the GL theory [1] to describe the vortex-liquid state above Hirr, i.e., writing

〈|�0(B)|2〉 =
√

2kB T
π2β

�(ξ), where �(ξ) = √
π

[
ξ + exp(−ξ 2)

2
∫ ξ

−∞ dς exp(−ς2)

]
, we find that

�M↑↓ ∝ 1

B
〈|�0(B)|2〉 ∝ �(ξ), (3)

which is a universal function of the dimensionless parameter ξ(B, T) = √
ε0/kBT . Employing

the material parameters, Tc = 4.4 K, mc
me

= 2.0, where me, mc are the free electron and
cyclotron mass respectively, and EF/kB = 133 K, at the temperature of the experiment,
T = 40 mK, so that ξ ≈ (31[T ]/B[T ]) (1 − B/Hc2), and treating Hc2 and the proportionality
factor in equation (3) as adjustable parameters, the best fit is obtained for Hc2 = 2 T (figure 4).
The resulting curve reflects the crossover between the vortex state below Hc2, which is well
described by mean-field theory, and the normal state far above Hc2, with the long tail of the
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field-dependent magnetization hysteresis corresponding to the enhanced influence of 2D SC
fluctuations.

In conclusion, we have shown that the striking phenomenon of the weak magnetization
hysteresis loops, observed deep in the vortex-liquid state of a nearly 2D superconductor, can be
reasonably explained as arising from shear viscous flow of easily sliding vortex chains, which
are clustered around a small number of strong pinning centres.

This research was supported by a grant from the Israel Science Foundation founded by the
Academy of Sciences and Humanities, and by the fund for the promotion of research at the
Technion.
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